Executive Summary

1.0 EXECUTIVE SUMMARY

1.1 Introduction

Companies Act, 1956 on 25th October 1979. The company operates cement and clinker manufacturing units located at Beawar, Ras, and Nawalgarh in Rajasthan; Balodabazar–Bhatapara in Chhattisgarh; Sedam in Karnataka; Guntur in Andhra Pradesh; and Ras Al Khaimah (RAK) in the United Arab Emirates (UAE). SCL also operates twelve split grinding units located at Khushkhera, Suratgarh, and Jobner in Rajasthan; Roorkee in Uttarakhand; Aurangabad in Bihar; Bulandshahar and Etah in Uttar Pradesh; Panipat in Haryana; Hansda in Jharkhand; Cuttack in Odisha; Patas in Maharashtra; and Purulia in West Bengal. At present, the installed cement production capacity of the SCL Group is 62.8 million tonnes per annum (MTPA). The company has a total power generation capacity of 1084.94 MW, comprising 503.0 MW thermal power, 242.50 MW waste heat recovery system (WHRS), 283.14 MW solar power, and 56.3 MW wind power.

Shree Cement Limited (SCL) is a public limited company incorporated under the provisions of the

1.1.1 Identification of the Project

The Proposed Integrated Cement Plant with production capacity of clinker: 0.95 million TPA, Cement: 0.99 million TPA (OPC, PPC, PSC, SRC, LC3, RHPC & Composite Cement) CPP: 15 MW, WHRS: 7 MW) and DG Sets 2500 KVA (1x2500 KVA or 2x1000 KVA & 1x500 KVA or 1x1000 KVA, 2x500 KVA & 2x250 KVA) in Khara Siang Lum Pyrshin in Daistong village, District of East Jaintia Hills (Meghalaya) by Shree Cement Ltd.

1.2 Site Selection for the project.

The proposed project site is located in East Jaintia Hills district, Meghalaya. The Nurpuh Wildlife Sanctuary lies at an approximate distance of 28.13 km in the south-southwest (SSW) direction from the site, indicating no direct impact on any notified eco-sensitive area.

There are no Archaeological Sites or Wetland Reserves within a 10 km radius of the project location. The international border with Bangladesh is situated at approximately 37 km from the site.

The nearest human settlement is Village Daistong, located about 0.82 km in the east-southeast (ESE) direction.

Overall, the selected site does not fall within any environmentally or archaeologically sensitive zone and is suitable for the proposed development from a locational sensitivity perspective.

Executive Summary

1.3 Brief Description of the Project.

Fir the brief description of the project the below mentioned table may be referred.

Table – 1.1: Brief Description of Nature, Size and Location of the Project

S.	Particulars	Details					
No.							
1.	Type of Project	Greenfield Project					
2.	Name of Unit	Integrated Cement Plant (A Unit or	f Shree Cement Limited)				
3.	Size & Configuration	✓ Clinker: 0.95 million TPA					
	of Project	✓ Cement: 0.99 million TPA (Ol	PC, PPC, PSC, SRC, LC3, RHPC &				
		Composite Cement)					
		✓ CPP: 15 MW					
		✓ WHRS: 7 MW					
		✓ DG Sets: 2500 KVA (1 x 2500) KVA or 2 x 1000 KVA & 1 x 500				
		KVA or 1 x 1000 KVA, 2 x 500 KVA & 2 x 250 KVA)					
		✓ Project Site Area: 25.08 ha (61.95 Acres)					
4.	Location						
	Villages	Daistong					
	Elaka	Elaka – Nongkhlieh Dolloiship					
	District	East Jaintia Hills					
	State	Meghalaya					
5.	Geographical extents	Latitude	Longitude				
	of project site	25°21'01.823" N to	92°33' 27.501" E to 92°33'27.104"				
		25°20'59.918" N	Е				
	Toposheet No.	Core & Buffer Zone: 83C/11 & 83C/7					
6.	Project Details						
	Capital Cost of the	Rs. 1264 Crores					
	project						

Executive Summary

S.	Particulars	Details					
No.							
	Cost for	• Capital Cost: Rs. 23.5 Crores					
	Environmental	• Recurring Cost: Rs. 0.3	0 Crores/annum				
	Protection measures						
7.	Project Basic Require	ment					
	Area	Total Plant Area	25.08 ha (61.95 Acres)				
		Greenbelt Development	Approx. 8.27 ha (20.44 Acre) (~33% of total				
		& Plantation	plant area)				
	Water Requirement	600 KLD (Including Fres	h Water Requirement: 515 KLD & Recycled				
	(KLD)	Water from STP & RO R	ejects: 85 KLD).				
		Source: Water requireme	ent will be fulfilled by the ground water and				
		nearby surface water bod	lies with prior statutory permission from the				
		concerned State government.					
	Power Requirement	Total Power Requirement	:: 18 MW				
	(MW)	 Energy consumption 1 	per ton of Clinker: 48.2 Kwh				
		 Energy consumption 1 	per ton for Cement Grinding:				
		• OPC, PPC, RHPC	, LC3 & SRC Cement: 25 to 30 Kwh,				
		• PSC Cement: 28 to	o 51 Kwh,				
		Composite Cemen	t: 28 to 36 Kwh				
		Thermal Energy consump	otion of Clinker: 670 Kcal/Kg				
		• Source: Proposed Capti	ve Power Plant, WHRS and State Grid Power				
		Supply & DG sets (for ba	ck up)				
8.	Manpower Requiremen	t					
	Implementation	Permanent: 100 Nos.					
	(Construction) Phase	Contractual: 500 Nos.					
	Operation Phase	Permanent: 150 Nos.					
		Contractual: 300 Nos.					
9.	Project Site Vicinity D	etails					

Executive Summary

	Particulars	Details	
).			
	Nearest Village	Village Daistong (~1.43 km in ESE direction)	
	Nearest Major Town City	Mutong (~5.51 km in ESE direction)	
	Nearest National/State Highway	NH- 6 (~18.93 km in SW direction)	
	Nearest Railway Station	Ditokcherra Railway station (~36.90 km in SE direction)	
	Nearest Airport	Silchar Airport (~63.35 km in SE direction)	
		Guwahati Airport (~128.21 km in NW direction)	
	Nearby Water Bodies	River (Wah Chyrmit) about 4.48 NW Direction.	
		Pal Lam Kankalang River about 8.50 NE Direction	
	National Park,	No National Park, Wildlife Sanctuary, Tiger/ Elephant Reserve, exist	
	Wildlife Sanctuary,	within 10 km radius study area.	
	Tiger/ Elephant		
	Reserve, Eco-		
	Sensitive Zone etc.		
	Reserved/ Protected	No Reserved/ Protected Forest within 10 km Study area. Except,	
	Forest within 10 km	Saipung Reserved Forest (~6.35 in SE direction)	
	radius		
	CPA/SPA/OPA within	within There is no CPA/SPA within 10 km radius study area.	
	study area		
	Archaeological site	None within 10 km radius	
	Seismic Zone	Zone - V as per IS: 1893 (Part-I): 2002	

1.4 Major Requirements for the Proposed Project

1.4.1Raw Material Requirement:

Executive Summary

Major raw material required for Clinker & Cement production is Limestone, Iron Ore, Bauxite, Gypsum (Mineral, Synthetic, Chemical & Imported), Fly ash and Slag. Details regarding quantity of raw materials required their source along with distance and mode of transportation are given in Table 11.2 (a & b):

Table No. 1.2

S. No.	Name of Raw Material	Basis	Quantity (Million TPA)	Source	Mode of Transport.
1.	Limestone	1.5 T/T of Clinker	1.43	Captive Mine	~ 0.1 km; Combination of Two or three modes.
2.	Iron Ore (Laterite)	0.015 T/ T of Clinker	0.014	Nearby Area	~60 km; Combination of Two or three modes.
3.	Bauxite	0.044 T/ T of Clinker	0.042	Nearby Area	Combination of Two or three modes.
4.	Gypsum	0.07 T / T of Cement	0.06	Bhutan Imported	~60 km; Combination of Two or three modes.
5.	Fly ash	0.35 T/T of Cement	0.34	Nearby Area	Combination of Two or three modes.
6.	Slag	0.55 T/T of Cement	0.54	Nearby Area	Combination of Two or three modes.
7.	Dolochar	-	0.095	Nearby Spong Iron Plant	~60 km; Combination of Two or three modes.
8.	Petcock as feed Stock	-	0.095		~60 km; Combination of Two or three modes.
9.	Biomass	-	0.56	Nearby Agriculture Field	~60 km; Combination of Two or three modes.

Table No 1.2 (b)

Requir	Requirement (in Million TPA) for Cement (OPC/PPC/Composite Cement/PSC/RHPC/LC3/SRC)							
Produc	Production							
S. No.	Raw Material	OPC / RHPC/ SRC	PPC	PSC	LC3	Composite Cement		

Executive Summary

	Total Capacity (MTPA)**	0.99	0.99	0.99	0.99	0.99
6.	Limestone	-	-	-	0.10	-
5.	Calcined Clay	-	-	-	0.33	-
4.	Slag	0.00	0.00	0.00	-	-
3.	Fly ash	0.00	0.35	0.00	-	0.35
2.	Gypsum	0.07	0.07	0.07	0.07	0.07
1.	Clinker	0.92	0.57	0.38	0.50	0.38

Note:

1.4.2 Fuel Requirement

Fuel / Feed stock Requirement

Details regarding quantity of Fuel/Feed Stock required, their source along with distance and mode of transportation for proposed Integrated Cement Plant is given in Table -1.3

Table – 1.3 Fuel Requirement for Proposed Integrated Cement plant

S. No.	Name of	Quantity	Source	Calorific	Ash	Sulphu	Distance & Mode of		
	Feed	(Million		Value	(in	r	Transportation		
	Stock	TPA)		(Kcal/kg	%)	(in %)			
)					
	For Cement Plant								
1.	Indian &	0.36	Indigenous Coal:	4200-	30-	0.4-0.5	Local Area ~20 to		
	Imported		Nearby Coal Mines	4800	35		200 km by Road		
	Coal		Imported Coal:	5000-	6-10	0.5-0.6	Calcutta Port /		
			USA, South Africa,	5800			Calcutta or Paradeep		
			Australia and						

^{*}Clinker will also be sent to the sister grinding units, market sale and will also be received from outside (Other SCL Plants), if Clinkerization plant is not in operation or in case of shortfall of Clinker.

^{**} Cement production will be 0.99 million TPA only either from various options as OPC/RHPC/SRC/LC3/PPC/PSC/Composite Cement.

Executive Summary

S. No.	Name of	Quantity	Source	Calorific	Ash	Sulphu	Distance & Mode of
	Feed	(Million		Value	(in	r	Transportation
	Stock	TPA)		(Kcal/kg	%)	(in %)	
)			
			Indonesia through				or Vizag – ~650 km
			Calcutta Port /				by Road.
			Calcutta or Paradeep				
			or Vizag etc.				
2.	Petcoke	0.24	Petcoke	7800 -	0.5-2	6-9	Calcutta Port /
	as feed		USA / Saudi Arabia	8300			Calcutta or Paradeep
	stock		/ Turkey / Canada				or Vizag – ~650 km
			through Calcutta				by Road.
			Port / Calcutta or				
			Paradeep or Vizag				
			etc.				
3.	Dolochar	0.24	Nearby Sponge Iron	2500-	68.1	0.32	~100 to 300 km
			Plant	2700	8		by Road
4.	Biomass	0.30	Nearby Agriculture	2300-	5- 29	0.15 -	~100 km by Road
			Fields	2500		0.22	
			For Captive	Power Plan	t		
1	100%	0.225	Indigenous Coal:	4200-	30-	0.4-0.5	Local Area ~20 to
	Indian		Nearby Coal Mines	4800	35		200 km by Road
	Coal						
2	100%	0.12	USA, South Africa,	5000-	6-10	0.5-0.6	Calcutta Port /
	Imported		Australia and	5800			Calcutta or Paradeep
	Coal		Indonesia through				or Vizag ~650 km by
			Calcutta Port /				Road
			Calcutta or Paradeep				
			or Vizag Port etc.				

Executive Summary

S. No.	Name of	Quantity	Source	Calorific	Ash	Sulphu	Distance & Mode of
	Feed	(Million		Value	(in	r	Transportation
	Stock	TPA)		(Kcal/kg	%)	(in %)	
)			
3	Biomass	0.26	Nearby Agriculture	2300-	5- 29	0.15 -	~100 km by Road
			fields	2500		0.22	

1.4.3 Other Basic Requirements:

Total water requirement for proposed project will be 600 KLD; which will be sourced from Water from Dihang River/ Ground water/ Mine Pit water based on the availability.

Table – 1.4: Water Requirement

S.	Descriptions / Particulars	Total W	ater Requirement	Remarks
No.		(KLD)		
		Fresh	Recycled Water	
		Water	(RO Reject/	
		(KLD)	Domestic waste)	
			(KLD)	
Α.	Cement Plant Process			
	Requirements			
	Cement Mill Spray	120		70 KLD
	Cooling Water	60		Cooling water blow down & RO
	Stackers & Reclaimer	10		Reject Water will be used in Mill
	Raw Mill Section	10		Spray, Stackers & Recamier.
	Coal Mill	5		
В.	WHRS	40	15	
C.	СРР	160	50	
D.	Drinking & Domestic requirement for Plant	25	05	Sewage water will be treated in STP & 15 KLD treated STP water

Executive Summary

E. Plantation & Greenbelt Requirement	85	15	will be used for greenbelt & plantation development
Grand Total (A + B + C + D + E)	515	85	515 KLD Raw Water +-85 KLD Recycled water (from STP Treated, Blowdown & RO Reject)

Note: Total Water Requirement 600 KLD {including Fresh requirement 515 KLD & Recycled water from STP & RO rejects 85 KLD}.

Power Requirement for the plant will be 18 MW; which will be sourced from proposed Captive Thermal Power Plant 15 MW) & Waste Heat Recovery System (7 MW), State Grid and DG Sets (for emergency backup).

1.5 Process Description:

The manufacturing of cement will be based on dry process technology and essentially consist of the following unit operation steps:

- > Crushing of limestone at the mine site.
- ➤ Pre-blending of crushed limestone by Stacker & Reclaimer.
- Grinding-cum-Drying of Raw Materials and Coal/ Petcoke/ Dolochar/ Biomass in VRM
- ➤ Homogenization of raw meal in a blending silo.
- Clinkerization of the raw meal in a rotary kiln with preheater, calciner and Cooler.
- Grinding, storage and packing of cement
- Transportation of Clinker & Cement through Road Networks

Executive Summary

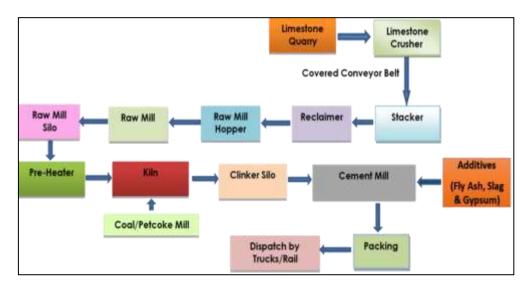


Figure 1.1

Technology Description of Cement Plant

- ✓ Limestone Crushing: ROM limestone is processed through a wobbler and crusher to achieve <90 mm size, then sent for stacking and pre-blending.
- ✓ Pre-Blending: Crushed limestone is homogenized using stacker and reclaimer systems.
- ✓ Raw Material & Fuel Grinding (VRM): Limestone with corrective materials is ground and dried in VRM using preheater hot air. Coal/petcoke is crushed in a roll crusher and ground in a ball mill/VRM. Alternative fuels such as hazardous waste, dolochar, and biomass may be used.
- ✓ Raw Meal Homogenization: Ground material is stored and blended in continuous blending silos.
- ✓ Clinkerization: Preheater and calciner ensure efficient heat transfer and partial calcination. Final clinker formation occurs in the kiln's burning zone.
- \checkmark Clinker Cooling: Hot clinker (~1000°C) is cooled in a grate cooler and transported to storage silos.
- ✓ Cement Grinding & Packing: Clinker is ground in the cement mill using hot air from HAG (coal/dolochar/biomass). Final cement is stored in silos and packed via electronic rotary packers.
- ✓ Transport: Cement and clinker are dispatched mainly by road via NH-6.
- ✓ NOx Reduction (SCR): Low-NOx burners, calciner modifications, controlled reducing atmosphere, and combustion optimization minimize NOx generation through in-system reactions.
- ✓ Alternative Fuel Co-Processing: Hazardous/non-hazardous waste is co-processed at ~1400°C, reducing coal dependency and eliminating residues. AFR system includes ground and feed hoppers, hoists/elevators, conveyors, double-flap valves, and safety shut gates.

Executive Summary

1.6 Description of Environment.

The Baseline was conducted during summer season (March to May 2025).

1.6.1 Air Environment

Baseline ambient air quality was monitored at eight locations within the 10 km study area during March 2025 to May 2025. PM₁₀ concentrations ranged from 32.48–63.21 μg/m³ (98th percentile: 60.31–62.81 μg/m³), while PM_{2.5} levels ranged from 14.65–34.56 μg/m³ (98th percentile: 30.38–34.42 μg/m³). Gaseous pollutants were low, with SO₂ between 2.29–4.92 μg/m³ and NO₂ between 3.11–5.98 μg/m³, all well below NAAQS limits. All other monitored air quality parameters (including CO, O₃, NH₃, Pb, Ni, As, and Benzene) were also well within National Ambient Air Quality Standards (NAAQS), confirming overall compliance.

Variations in particulate matter were influenced by rural traffic, domestic fuel burning, and scattered mining activity. Overall, the region maintained good air quality throughout the baseline period.

1.6.2 Water Environment

Groundwater Quality

Groundwater samples collected during March–May 2025 from Saipung PHC, St. Joseph's Church (Khahnar), Tangnub Presbyterian Church (Lumpdeng), and Shnongrim playground showed slightly acidic pH (5.32–5.90). Other parameters were within IS 10500:

• Chlorides: 34.2–38.2 mg/L

• Sulphate: 18.2–25.2 mg/L

• Nitrate: 8.1–9.8 mg/L

• Calcium: 42.5–48.2 mg/L

Magnesium: 8.4–9.2 mg/L

• Iron: <0.05 mg/L

Groundwater is suitable for livestock use but often unsuitable for direct human consumption due to acidity. The proposed project is designed as a zero-discharge system, ensuring no impact on local water bodies. SCL will support the community by implementing desalination-based potable water supply measures under the EMP/SEDP.

1.6.3 Surface Water Quality

Executive Summary

Surface water sampled during the baseline period showed:

- pH: 5.4–5.8
- DO: 6.8–7.6 mg/L
- BOD: 4.2–4.8 mg/L
- Chlorides: 18.12–20.30 mg/L
- Sulphates: 24.40–24.70 mg/L
- Total Coliform: 44–46 MPN/100 ml

Most parameters comply with CPCB Category A standards, indicating suitability as a drinking water source after treatment.

1.6.4 Noise Environment

Noise monitoring conducted in March–May 2025 across five stations recorded day-time levels between 48.50–52.90 dB(A) and night-time levels between 38.10–42.60 dB(A). All values comply with CPCB standards for residential and silence zones.

Background noise stems from local traffic, community activities, and natural surroundings, reflecting a calm acoustic environment.

1.6.5 Soil Environment

Soil sampling during the baseline period revealed consistent texture—sandy-loam to loamy-clay—with good nutrient content:

- pH: 7.11–7.40
- Organic Carbon: 0.86–1.20%
- Phosphorus: 54.32–66.01 kg/ha
- Potassium: 162.9–215.58 kg/ha
- Magnesium: 472.33–809.51 mg/kg
- Calcium: 3508.9–3952.7 mg/kg

Soils are nutrient-rich and suitable for vegetation. Slight alkalinity is natural to the region. SCL will implement soil conservation and greenbelt measures as part of the EMP.

1.6.6 Ecology & Biodiversity (EB)

Executive Summary

Ecological surveys conducted during March–May 2025 show that the study area comprises agricultural land, scrub, grasslands, and forest patches. No protected areas or eco-sensitive zones exist within 10 km. Species recorded are common and non-threatened.

Ecological Impact & Mitigation

Potential biodiversity impacts from the integrated cement and thermal power project include habitat disturbance, dust deposition, and noise. Mitigation includes:

- Wildlife Conservation Plan (WLCP)
- 33% native-species greenbelt
- Advanced pollution control systems (ESP, Bag Filters, FGD, Low-NOx)
- Noise barriers and wildlife-safe infrastructure
- Fly ash management, soil protection, and ZLD
- Continuous ecological monitoring and annual reporting

1.6.7 Socio-Economic Environment

Socio-economic surveys undertaken during March–May 2025 indicate rural livelihoods supported by agriculture, small-scale trade, and labor work. The area has basic infrastructure such as schools, health centers, and road networks.

The project is expected to generate local employment, enhance skills, support community development, and improve infrastructure through CSR/SEDP initiatives.

1.7 Anticipated Environmental impacts and Mitigation Measured

1.7.1 CONSTRUCTION PHASE IMPACTS & MITIGATION

Table 1.5: Land Use & Physical Environment – Construction Phase

Aspect	Impact During Construction	Significance	Mitigation Measures
Topography	Minor disturbance due to site clearance and levelling	Low	Maintain natural contours; restrict excavation
Land Use	Temporary loss of agricultural activity within project site	Medium	Reuse topsoil; restore green areas post-construction
Soil	Soil disturbance, compaction, erosion		Controlled excavation; soil reuse; temporary bunds

Executive Summary

Aspect	Impact During Construction	Significance	Mitigation Measures	
Hydrology	No direct impact (no water body within site boundary)	Insignificant	Protect southwest waterbody zone; maintain buffer	
Dust (PM)	M) Significant temporary dust from earthwork, vehicle movement Medium		Water sprinkling; coverin stockpiles; speed control	
Vehicle Emissions	Temporary rise in NOx, SO ₂ , CO, PM from machinery	Low	Use PUC-certified vehicles; equipment maintenance	
Noise	Noise due to construction machinery & vehicles		Use silencers; restrict nighttime work; PPE for workers	

Table 1.6: Air Quality – Construction Phase

Source	Impact	Duration/Extent	Mitigation	
Earthwork, Excavation	High fugitive dust (PM)	Short-term, Localized	Water sprinkling; phased excavation	
Material Movement	Dust release from loading/unloading	Short-term	Covered trucks; avoid overloading	
Vehicle Exhaust	Increase in NOx, SO ₂ , CO, HC	Short-term	PUC vehicles; regular servicing	
Stockpiles	Wind-blown dust	Local	Cover stockpiles; stabilize heights	
Construction Debris Handling		Local	Covered disposal; designated waste areas	

1.7.2 OPERATION PHASE IMPACTS & MITIGATION

Table 1.7: Land Use & Physical Environment - Operation Phase

Aspect	Impact During Operation	Significance	Mitigation Measures	
Land Use	Permanent shift from agriculture to	Minor-	Job creation; CSR livelihood	
	industrial use	Moderate	support	
Topography	No further alteration expected	Insignificant	Maintain contour integrity	

Executive Summary

Aspect	Impact During Operation	Significance Mitigation Measures	
Hydrology	No discharge—Zero Liquid Discharge (ZLD) system	Insignificant	Continuous monitoring; stormwater management
Traffic	Increased raw material & product transportation	Moderate	Road safety plan; speed limits; paved roads
Noise	Increased noise from mills, fans, transport	Low-Medium	Acoustic enclosures; greenbelt; PPE
Air Pollution (Fugitive)	Dust from material handling, storage, transfer	Moderate	Bag filters; enclosed conveyors; paved roads
	PM, SOx, NOx, CO emissions from kiln/CPP	Moderate	ESP, Bag House, Low-NOx burners, lime dosing

Table 1.8: Air Quality – Operation Phase

Fugitive Emissions

Source	Impact	Extent/Duration	Mitigation	
Raw Material Handling	PM dispersion	Local, Continuous	Bag filters; enclosed conveyors	
Crushing (Limestone/Coal)	Dust and PM	Local, Continuous	Dust extraction system; APC equipment	
Clinker & Cement Grinding		Local	High-efficiency Bag House	
Packing & Dispatch	Fugitive PM	Local	Dust collectors; spill recovery	
Vehicular Movement	Dust + NOx, SO ₂	Plant premises	Paved roads; speed control (10–20 km/h)	

Table: 1.9: Stack Emissions

Source	Pollutants		Impact			Mitigation	
Kiln/Calciner	PM,	SOx,	NOx,	Increase	in regional	air	ESP/Bag House; Low-NOx burners; De-NOx
Killi/Calcillel	СО			load			system

Executive Summary

Source	Pollutants	Impact	Mitigation		
Cement Mill	PM	Local air deterioration	Bag House; enclosed systems		
CPP Boiler	PM, SOx, NOx	Air quality deterioration	ESP; lime dosing; Low-NOx burners		
Со-	Dioxins & Furans	Minor trace-level	High-temp combustion; strict emission		
processing	DIOAIIIS & Turaiis		monitoring		

1.7.3 SUMMARY OF IMPACT DIFFERENTIATION

Table 1.10: Construction Phase vs. Operation Phase – Comparison

Environmental Component	Construction Phase	Operation Phase	
Land Use	Temporary disturbance	Permanent agricultural-to-industrial conversion	
Topography	Minor contour modification	No further change	
Air Quality	Short-term dust (PM) and vehicle exhaust	Continuous stack emissions + fugitive dust	
Water Environment	No discharge; risk only from spills	ZLD; no outside impact	
Noise	Machinery and vehicle noise	Industrial noise from mills, fans, transport	
Soil Quality	Limited disturbance	Possible deposition of dust; controlled by greenbelt	
Ecology	Temporary disturbance from construction	Long-term habitat alteration; greenbelt mitigation	
Socio-economic	Temporary jobs	Long-term employment; CSR/SEDP benefits	

The financial viability of the project is assessed by examining the following key areas:

• **Investment and Operational Costs**: This includes a detailed estimation of the total investment cost, which incorporates the Environment Management Plan, as well as the projected costs for operation and maintenance.

Executive Summary

- Cost-Benefit Analysis: The assessment provides crucial financial statements, such as the Profit and Loss Statement, Projected Cash Flow Statement, and Balance Sheet, to analyze the project's profitability.
- **Key Financial Indicators**: The financial viability is measured through standard indicators, including the Internal Rates of Return on both investment and equity, the Break-Even Point, and the project's Payback Period.
- **Sensitivity Analysis**: The study concludes with an analysis of how the Break-Even Point would be affected by various changes or potential variables.

1.8 Environmental Monitoring Programme:

Details of the environmental monitoring schedule / frequency, which will be undertaken for various environmental components, as per conditions EC/CTE/CTO are given in the Table – 1.11

Table No. 1.11 Post Project Monitoring

S.	Description	Frequency of	Location
No.		Monitoring	
1.	Meteorological	Continuous	Plant Site
	Data		
2.	Ambient Air	Twice a Week &	Near to the entrance Gate of Plant Site
	Quality	Continuous Online	and towards the Villages in upwind &
		Monitoring	downwind direction from the plant
			site, as per the max. GLC obtained
			and as
			per EC / CTO conditions.
3.	Fugitive Emission	Quarterly or as per	Cement Mill, Packing Plant, Raw
		EC/CTO	Materials Handling Area & Coal Yard
4.	Stack Emission	Continuous Online	Raw Mill & Kiln, Coal/Petcoke Mill,
	Monitoring	Monitoring	Clinker Cooler, Cement Mill and CPP
			Boiler
5.	Water Quality	Twice in a year / As per	Nearby Ground water sources and
		NOC from CGWA	as per CTO conditions.
6.	Waste Water	Monthly & as per CTO	Sewage Treatment Plant as per CTO.
	Monitoring (STP	, ,	

Executive Summary

	Outlet)		
7.	Water Level	Every Season/ As per	Nearby Ground water sources and
		NOC from CGWA	as per CTO Conditions
8.	Noise Level Monitor	ring	
(i)	Ambient Noise	Monthly & as per EC /	Near to the entrance Gate of Plant Site,
	Monitoring	СТО	Health Centre
9.	Medical	Yearly or as per Factories	Health Centre /Dispensary
	Checku	Act	. ,
	p of Employee		
10.	Performance	Six Monthly	Raw Mill / Kiln Bag house, Coal
	evaluation of		Mill Bag House, Cement Mill Bag
	APCE's / Adequacy		House, Clinker Cooler ESP and CPP
	Study		ESP.

1.9 Additional Studies:

Additional Studies conducted in relation to Risk Assessment and Disaster Management Plan as per ToR points issued by SEIAA, Meghalaya vide File No. ML/SEAC/SEIAA/PP/EJH/126/2025 and ToR identification No. TO25B1101ML5999209N, dated 15th Oct 2025.

1.10 Project Benefits

The proposed project will play a significant role in meeting the rising demand for cement and will contribute positively to the economic growth of the region as well as the country. Shree Cement Ltd. is committed to actively supporting

socio-economic development in the villages surrounding the plant site. Key focus areas will include improvement of physical infrastructure, promotion of education, enhancement of health and family welfare services, development of community facilities, and support for cultural and social initiatives.

A comprehensive Social and Economic Development Plan (SEDP) has been prepared to address local needs, including the issues, concerns, and suggestions raised during the Public Hearing and the requirements identified in the Social Impact Assessment (SIA). The implementation of these measures will contribute significantly to improving the quality of life and ensuring sustainable development of the surrounding communities.

Executive Summary

1.11 Environmental Management Plan

1.11.1 Environmental Management Plan (Executive Summary – Concise Version)

The Environmental Management Plan (EMP) outlines the key measures to prevent, minimize, and manage environmental impacts during construction and operation of the proposed Integrated Cement Plant. The plan complies with all applicable environmental laws, CPCB guidelines, and industry best practices.

Key Focus Areas of EMP

- Air quality management
- Noise control
- Wastewater & stormwater management
- Solid & hazardous waste management
- Energy and resource conservation
- Rainwater harvesting & maximum reuse of treated water
- Greenbelt development
- Occupational health & safety
- Socio-economic development
- Budget allocation for all environmental safeguards

1.12.2 EMP Objectives

- Keep emissions and waste within statutory limits
- Ensure efficient use of water and energy
- Maintain safe working and environmental conditions
- Strengthen disaster preparedness and risk reduction
- Monitor environmental performance for continual improvement
- Enhance ecological buffer through plantation and greenbelt

1.12.3 EMP Budgetary Provisions

The EMP ensures that environmental impacts from construction and operation are effectively controlled through strong mitigation, monitoring, and institutional mechanisms. The project will also generate substantial direct and indirect employment, improve local infrastructure, and support socio-economic development—enhancing overall sustainability in the region.

Executive Summary

Table No. 1.12 EMP Details.

Sr. No.	Particulars	Capital Cost (Rs. Lakhs)	Recurring Cost (Rs. Lakhs/Year)
1	Pollution Control during Construction Stage (Dust suppression, wastewater treatment & disposal, roads, monitoring, muck disposal)	50.00	5.00
2	Air Pollution Control	1840.00	218.00
3	Water Pollution Control	38.00	19.50
4	Noise Pollution Control	20.00	3.50
5	Environmental Monitoring	308.00	29.00
6	Hazardous Waste Storage & Handling	5.00	5.00
7	Occupational Health & Safety	50.00	5.00
8	Greenbelt Development & Plantation	41.35	15.00
Total	_	2352.00	300.00

1.13 Occupational Health Hazard:

Shree Cement Ltd. will implement a comprehensive Safety, Health and Environment (SHE) Policy to control and minimize workplace risks. The key objectives are to prevent hazards, ensure a safe working environment, and safeguard the health of all employees. A dedicated budget of Rs. 50 Lakhs (capital) and Rs. 5 Lakhs (annual recurring) has been allocated for the first three years to establish and maintain robust occupational health and safety systems.

1.14 Conclusions

Executive Summary

The proposed project will generate significant socio-economic benefits for the surrounding communities through improved infrastructure, enhanced education and healthcare services, and increased employment opportunities. It will also contribute to government revenue through taxes and duties.

Environmental impacts are expected to remain within permissible limits due to the adoption of effective pollution control measures and continuous monitoring. Extensive greenbelt development around and within the plant will further mitigate emissions and enhance the local environment. Overall, the project is anticipated to support sustainable regional development while maintaining strong environmental safeguards.
